Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

نویسندگان

  • Zan Tang
  • Yucheng Hu
  • Zheng Wang
  • Kewu Jiang
  • Cheng Zhan
  • Wallace F Marshall
  • Nan Tang
چکیده

Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish Neural Tube Morphogenesis Requires Scribble-Dependent Oriented Cell Divisions

How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of i...

متن کامل

In vivo imaging reveals a role for Cdc42 in spindle positioning and planar orientation of cell divisions during vertebrate neural tube closure.

Specialization of the cell-division process is a common feature of developing embryos, but most studies on vertebrate cell division have focused on cells dividing in culture. Here, we used in vivo four-dimensional confocal microscopy to explore the role of Cdc42 in governing cell division in the developing neural epithelium of Xenopus laevis. We find that Cdc42 is crucial for stable positioning...

متن کامل

Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis.

Cell division plays an important role in animal tissue morphogenesis, which depends, critically, on the orientation of divisions. In isolated adherent cells, the orientation of mitotic spindles is sensitive to interphase cell shape and the direction of extrinsic mechanical forces. In epithelia, the relative importance of these two factors is challenging to assess. To do this, we used suspended ...

متن کامل

Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular mod...

متن کامل

Spindle Position in Symmetric Cell Divisions during Epiboly Is Controlled by Opposing and Dynamic Apicobasal Forces

Orientation of cell division is a vital aspect of tissue morphogenesis and growth. Asymmetric divisions generate cell fate diversity and epithelial stratification, whereas symmetric divisions contribute to tissue growth, spreading, and elongation. Here, we describe a mechanism for positioning the spindle in symmetric cell divisions of an embryonic epithelium. We show that during the early stage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2018